

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Distribution of risk elements in the organism of sheep after industrial intoxication with zinc

Jozaf Bíreš^a; Pavol Bartko^a; Miroslav Húška^a; M. Bírešová^b

^a University of Veterinary Medicine, Košice, Slovakia ^b Institute of Experimental, Košica, Slovakia

To cite this Article Bíreš, Jozaf, Bartko, Pavol, Húška, Miroslav and Bírešová, M. (1997) 'Distribution of risk elements in the organism of sheep after industrial intoxication with zinc', *Spectroscopy Letters*, 30: 7, 1263 — 1277

To link to this Article: DOI: 10.1080/00387019708006722

URL: <http://dx.doi.org/10.1080/00387019708006722>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Distribution of risk elements in the organism of sheep after industrial intoxication with zinc

Bíreš Jozef, Bartko Pavol, Húška Miroslav

University of Veterinary Medicine, Komenského 73, 041 81 Košice,

Slovakia

Bírešová, M.

Institute of Experimental Veterinary Medicine

Hlinkova 1/A, 040 01 Košice, Slovakia

Summary

Diagnostics of experimental zinc intoxication by industrial emission from the zinc and copper factory on the basis of accumulation and distribution of Zn, Cu, Fe, Mo, Se, As, Cd and Pb in the liver, kidneys, spleen, musculature, uterus, ovaries, chorioidea of eye and bones in seven experimental and five control sheep is described. A daily intake of Zn from industrial emission was 6158.07 mg/an experimental animal. The first animals died of zinc intoxication on d 42 and the last one on d 58 of the experiment. The highest concentration of zinc in experimental animals died of zinc intoxication was in the liver dry matter ($1167.3 \pm 314.1 \text{ mg.kg}^{-1}$) and in the kidneys ($1049.5 \pm 283.7 \text{ mg.kg}^{-1}$). Significantly higher Zn content compared with the control sheep was confirmed in the experimental ones in the liver, kidneys, ovaries and eye chorioidea ($p < 0.01$). The liver, kidneys, uterus were the organs with the highest Cu accumulation. The highest Fe accumulation was found in the spleen, kidneys and liver. Distribution of Mo and Se in the organs analyzed in experimental and control animals was similar. The industrial emission intake from the copper and zinc factory manifested in statistically higher accumulation of As, Cd and Pb in the organism of experimental sheep than in control ones ($p < 0.05$;

$p < 0.01$). Results of accumulation and distributionn of Zn and other toxic elements involved in the substrate tested in the organism of the experimental animals died of Zn intoxication in comparison with the controls have confirmed a significance of their analysis in sheep for estimation of the effect of industrial emission from the zinc and copper factory.

Laboratory diagnostics of zinc intoxication is based upon the knowledge on the biological importance of Zn and its mechanism of toxicicity (Dreosti, 1982; Thompson et al., 1984). Observation of enzymatic systems on the cellular and subcellular level, in which Zn is their component and influences them, is used in the indirect diagnostics of Zn intoxication (O'Dell, 1984; Vallee et al., 1984). Assessment of haemolytical anaemia and leucocytosis in a cumulative, but especially in toxic phase of Zn intoxication is based upon determination of the parameters of the haematological profile (Robinette, 1990). Impairment of functional capability of the liver, kidenys and pancreas gives opportunity, in the course of Zn intoxication, to observe the extent of impairment of the lipid, saccharide and protein metabolism (Llobet et al., 1988; Smith et al., 1984; Allen et al., 1985). Quantification of the parameters of the immune and reproduction profile determines at the chronic intoxication the effect of Zn on defensive and reproduction functions (Bíreš et al., 1990; Kudláč et al., 1990). The tests for mutagenicity, carcinogenicity and teratogenicity are involved into the observation of the toxic effect of Zn on the animal organism (Leonard et al., 1986). An important part of the laboratory diagnostics of zinc intoxication is patho-anatomical and histological evaluation of changes in the liver, kidneys, spleen or other organs (Breitschwerdt et al., 1986). The analysis of Zn in feeds and biological material of animals is inevitable to make an objective diagnosis of zinc intoxication (Leita et al., 1991; Wentink et al., 1985).

Selection of laboratory diagnostic methods depends on the course of intoxication, way and duration of zinc salt intake, animal species, their age as well as the way of breeding. In our work the analysis of feeds, tested substrate and organs for the contents of Zn, Cu, Fe, Mo, Se, As, Cd and Pb was used to make the diagnosis of experimental intoxication with Zn from industrial emission of the zinc and copper factory in sheep.

Material and Methods

Observations were performed under experimental conditions on twelve 18-24 months old Improved Vallachian ewes in the second month of pregnancy. Seven ewes were given the industrial emission from the Cu and Zn factory daily after the morning feeding by an oesophageal tube. Samples of the tested emission were obtained by dedusting of the electrostatic precipitators from the factory chimney. The amount of the emission intaken per an experimental ewe represented according to the initial live weight (40.254 ± 3.55 kg) 31.99 g. A daily intake of Cu, Fe, Zn, Mo, Se, As, Cd and Pb from emission per an experimental animal is given in table 1. Five ewes, with their initial live weight of 40.3 ± 4.38 kg, were included into the control group.

Feeding and treatment of both the experimental and control ewes was the same. The feed ration consisted of meadow hay (1.5 kg/head/day), feed mixture BAK (0.20 kg/head/day) and drinking water (5 l/head/day). The intake of observed elements from feeds in the experimental and control group is listed in table 2. Table 3 shows the intake of Cu, Fe, Zn, Mo, Se, As, Cd and Pb from both the emission and feed in experimental animals.

Application of emission lasted in experimental animals until their death under the symptoms of zinc intoxication (Bireš et al., 1996). The mean survival time in experimental animals was 46.28 \pm 0.3 days. The first animal died on d 42 and the last one on d 58 of the experiment. The control ewes were killed on d 58 of the experiment. The experimental animals died of zinc intoxication and the control ones, killed at the end of the experiment, were examined *post mortem*. The samples weighing 10-20 g for analysis of risk elements were taken from the right liver lobe, cortical part of the right kidney, spleen, thigh musculature (*m. bicipitis femoris*), uterus (*Corpus uteri*), left ovary, eye chorioidea and carpal bone of the left thoracal limb (*os metacarpale*).

Concentration of Zn, Cu, Fe, Mo, Se, As, Cd and Pb in the examined organs, tested emission and feeds was determined by the method of the atomic absorption spectrophotometry using the Perkin Elmer, type 1100 and 4100 ZL. Mineralization of emission, examined feeds and organs was carried out in the mixture of HNO_3 and H_2O_2 in the microwave system (Milestone mls 1200). Results of

Table 1. Elements intake in mg from the emission per head and day (experimental group)

Body weight (kg)	Cu	Fe	Zn	Mo	Se	As	Cd	Pb
$\bar{x} \pm SD$ 0.25±3.55	402.02	95.97	6158.07	1.436	2.975	15.38	0.598	22.14

Table 2. Elements intake in mg from the food per head and day experimental group and control group

Daily intake	Cu	Fe	Zn	Mo	Se	As	Cd	Pb
Meadow hay (1.50 kg)	12.66	275.1	79.35	0.601	1.035	2.934	0.005	0.08
Feed mixture (0.20 kg)	18.06	17.4	12.84	0.1	0.45	0.18	0.046	0.367
Drinking water (5 l)	2.43	0.954	1.22	0.14	0.93	trace		
Total	33.15	293.45	93.41	0.841	2.41	3.11	0.051	0.447

Table 3. Elements intake in mg from the emission and food per experimental animal and day

Source intake	Cu	Fe	Zn	Mo	Se	As	Cd	Pb
Emission	402.02	95.97	6158.07	1.436	2.975	15.38	0.598	22.14
Fodder	33.15	293.45	93.41	0.841	2.41	3.14	0.051	0.447
Total	435.17	389.42	6251.48	2.277	5.385	18.52	0.649	22.587

analyses of risk elements in the dry matter of the organs investigated are expressed by the mean values (\bar{x}) with a standard deviation ($\pm SD$). Statistical comparison of the analysis results in the examined organs between experimental and control groups was performed by the Student t-test.

Results

Concentration of Zn in the liver of sheep died of zinc intoxication was $1167.3 \pm 314.1 \text{ mg.kg}^{-1}$ (Fig. 1). Kidneys appeared to be also the organs with a high zinc cumulation ($1049.5 \pm 289.7 \text{ mg.kg}^{-1}$). The high amount of Zn was also cumulated in the uterus, then in spleen and ovary ($367.6 \pm 303.9 \text{ mg.kg}^{-1}$, $274.0 \pm 179.6 \text{ mg.kg}^{-1}$ and $245.6 \pm 73.5 \text{ mg.kg}^{-1}$, respectively). The lowest amount of Zn was found in the eye chorioidea and bone. Significantly higher Zn content compared to the control ewes was confirmed in experimental animals in the liver, kidneys, ovary and eye retina ($p < 0.01$).

The highest levels of Cu were recorded in the liver of sheep died of Zn intoxication ($445.6 \pm 238.1 \text{ mg.kg}^{-1}$), kidneys ($124.7 \pm 55.5 \text{ mg.kg}^{-1}$) and ovary ($124.1 \pm 77.6 \text{ mg.kg}^{-1}$) (Fig. 2). The uterus and spleen belonged among the organs with the higher Cu cumulation. In the musculature and eye chorioidea, in comparison with the former organs, there were half-values of Cu. The lowest Cu concentration was in experimental sheep in the bone tissue ($3.81 \pm 1.14 \text{ mg.kg}^{-1}$). Statistically significant differences in the Cu levels between experimental and control animals were confirmed in the kidneys ($p < 0.01$) and ovary ($p < 0.05$).

The highest concentration of Fe in experimental sheep was found in the spleen ($3784.3 \pm 1386.9 \text{ mg.kg}^{-1}$; Fig. 3), then in kidneys, liver and ovaries. The Fe content in musculature and uterus was balanced (295.6 ± 59.4 and $290.5 \pm 147.4 \text{ mg.kg}^{-1}$, respectively). The lowest level of Fe in experimental animals was found in the bone tissue. Despite that the levels of Fe in the spleen, kidneys, liver and ovary were of half-values in control sheep compared to experimental ones, distribution of Fe in the organs examined, however, corresponded to the experimental group. A statistical difference in cumulation of Fe between both groups was observed in the ovary ($p < 0.05$).

The ovaries, kidneys, liver were the organs with the highest Mo cumulation in experimental sheep; in control ones it was the ovary, liver and bone (Fig. 4). In both groups of animals the lowest values of Mo were found in the uterus and eye chorioidea. Differences in the Mo levels in the organs examined between the experimental and control group were not statistically dependent on the fed industrial emission.

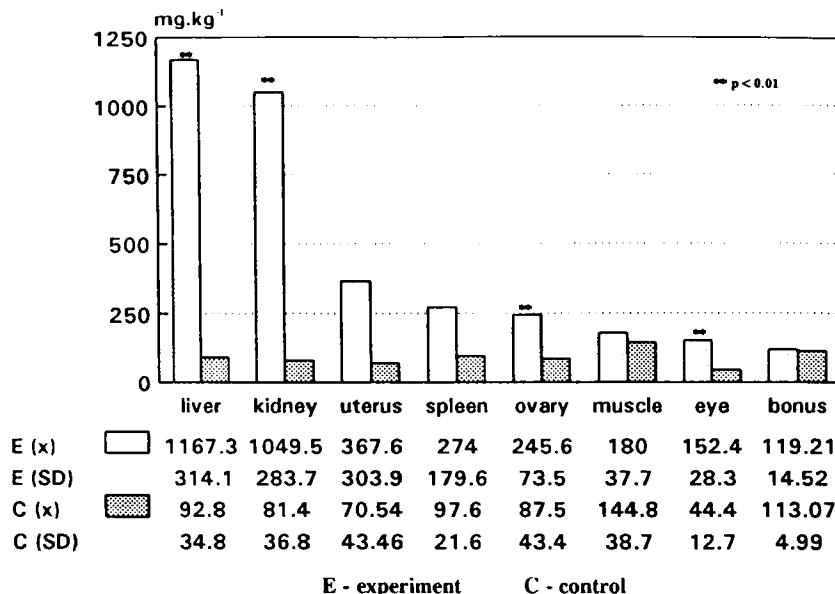


Fig.1. Zinc distribution in the target organs of ewes

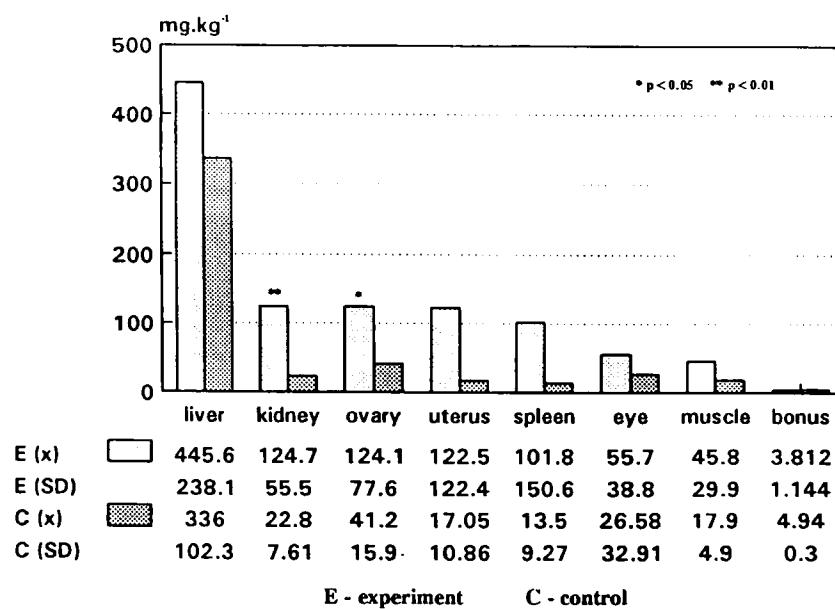


Fig.2. Copper distribution in the target organs of ewes

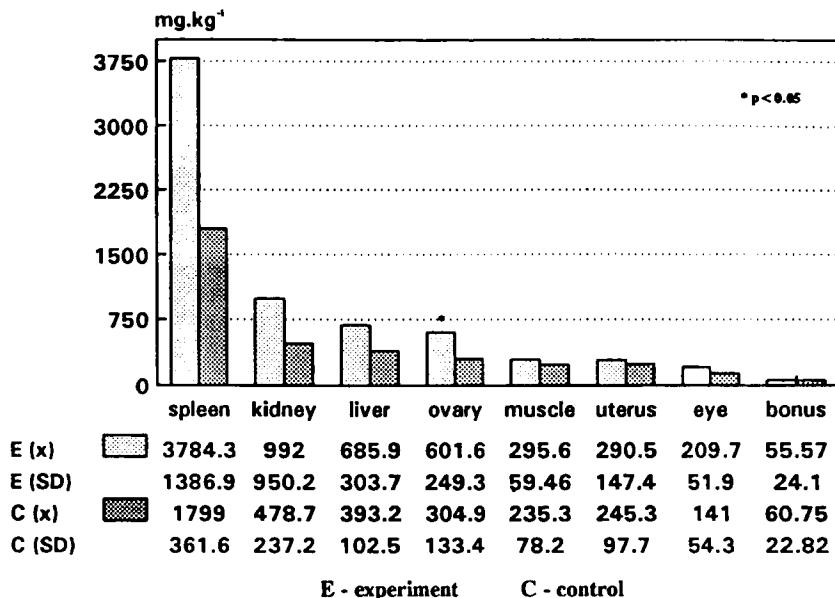


Fig.3. Iron distribution in the target organs of ewes

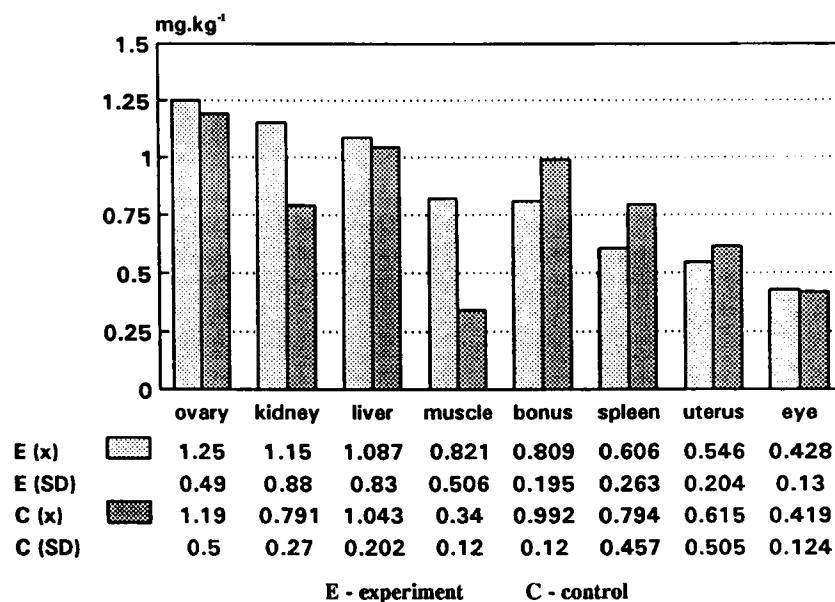


Fig.4. Molybdenum distribution in the target organs of ewes

Distribution of Se in the organs analyzed was the same in both the experimental and control sheep (Fig. 5). The highest concentrations of Se in both the experimental and control ewes were confirmed in their bones ($13.17 \pm 0.799 \text{ mg} \cdot \text{kg}^{-1}$ and $12.47 \pm 0.365 \text{ mg} \cdot \text{kg}^{-1}$, respectively). The ovaries were the second organ with a high Se cumulation in both the experimental and control groups ($5.78 \pm 1.46 \text{ mg} \cdot \text{kg}^{-1}$ and $5.32 \pm 0.73 \text{ mg} \cdot \text{kg}^{-1}$, respectively), then kidneys, musculature, uterus and liver followed. The lowest Se level was in both groups in the eye chorioidea. Based upon the evaluation of a statistical significance of Se content in the organs of the groups compared, there was no effect of fed emission on its cumulation in the organism of experimental animals.

Concentration of As was significantly higher ($p < 0.01$; $p < 0.05$) in all the organs analyzed in experimental animals in comparison with control ones (Fig. 6). Intake of the tested substrate manifested in experimental sheep in the highest cumulation of As in the ovaries and bone tissue ($6.78 \pm 1.31 \text{ mg} \cdot \text{kg}^{-1}$ and $2.83 \pm 0.64 \text{ mg} \cdot \text{kg}^{-1}$, respectively). About the same distribution of As in the experimental group was observed in the uterus, spleen and kidneys. The lowest As levels in this group of animals were in the liver, eye chorioidea and musculature. In the control group the highest amount of As was in the ovary. Differences in the concetration of As in control sheep were minimal.

In experimental sheep the highest Cd content was found in the ovary and kidneys ($1.60 \pm 0.36 \text{ mg} \cdot \text{kg}^{-1}$ and $1.17 \pm 0.52 \text{ mg} \cdot \text{kg}^{-1}$, respectively; Fig. 7). Concentration of Cd in the liver reached the level of $0.95 \text{ mg} \cdot \text{kg}^{-1}$. In the other organs of experimental animals in comparison with the levels presented, there were half-values of Cd. The lowest Cd content was recorded in the eye chorioidea and musculature of experimental animals. Statistically higher concentration of Cd was in experimental sheep than in control ones in the ovaries, kidneys, liver and bone, and lower in musculature ($p < 0.01$; $p < 0.05$).

Pb cumulated most in the kidneys of experimental sheep ($9.58 \pm 1.36 \text{ mg} \cdot \text{kg}^{-1}$) and in the ovaries of control ones ($1.02 \pm 0.50 \text{ mg} \cdot \text{kg}^{-1}$; Fig. 8). Then, the liver, ovaries and spleen of experimental animals were rich in Pb. As well, the lowest amount of Pb was recorded in the eye chorioidea and bone of experimental

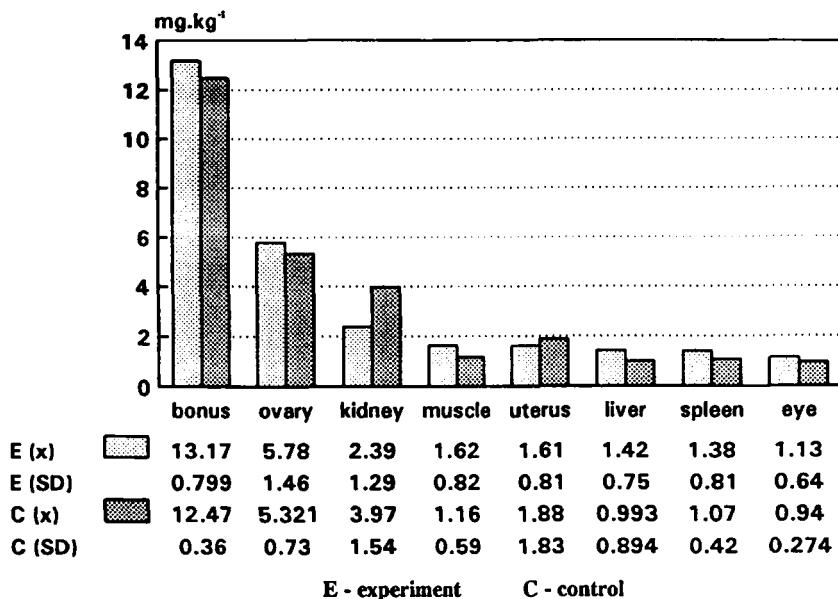


Fig.5. Selenium distribution
in the target organs of ewes

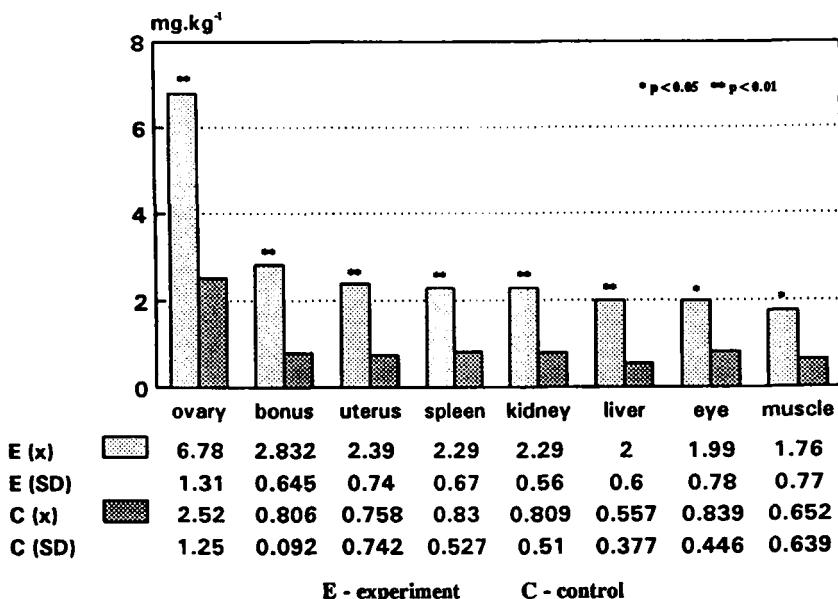


Fig.6. Arsenic distribution
in the target organs of ewes

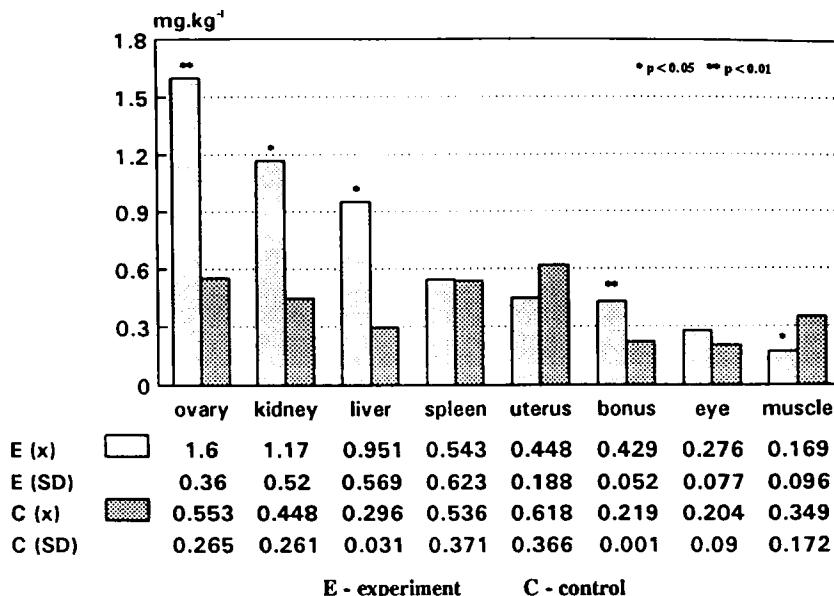


Fig.7. Cadmium distribution in the target organs of ewes

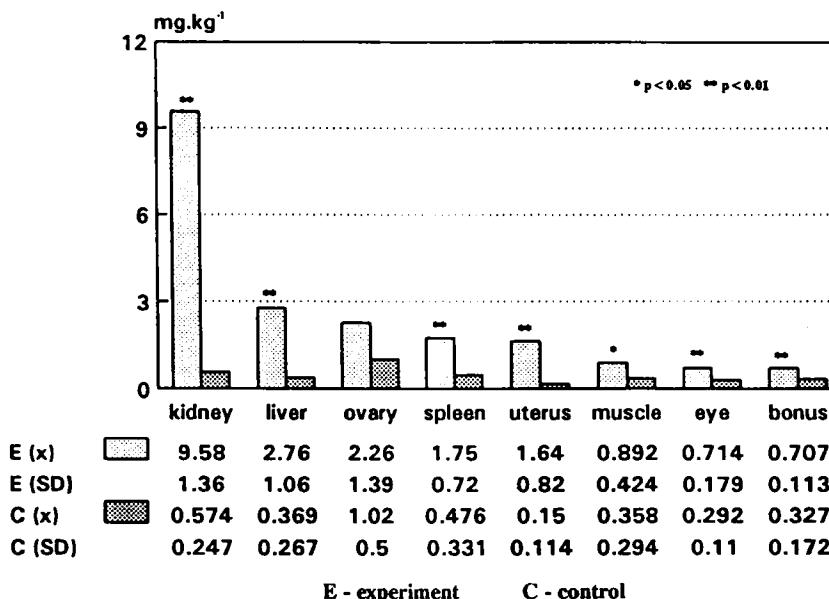


Fig.8. Lead distribution in the target organs of ewes

sheep. Except for ovaries, in all the organs analyzed in experimental animals there was significantly higher cumulation of Pb than in control ones ($p < 0.01$, $p < 0.05$, respectively). In control animals the lowest Pb levels were in the eye chorioidea and uterus.

Discussion

The limiting organ for the metabolism of Zn is the liver (Underwood, 1977). Cumulation of Zn on hepatal metallothionein depends on its dietetical intake and presence of the other elements influencing resorption, intermediary metabolism and secretion of Zn (Lloyd et al., 1993; Pauwels et al., 1994). The Zn level in the liver of sheep died in the experiment has confirmed Zn intoxication. The Zn concentration was higher than that in sheep with Zn intoxication from other sources than industrial emission (Allen et al., 1986). The Zn content in kidneys corresponded to Zn cumulation in the liver of experimental animals, which was also higher than that found by Allen and Masters (1985) in sheep with a daily intake of 2000 to 3000 mg of Zn. In experimental animals in comparison with control ones a high dietetical intake of Zn from industrial emission manifested in the increased levels of Zn also in the other organs examined. From the view point of diagnostics of the effect of industrial emission from the copper and zinc factory, an importance of analysis of Zn in the uterus, spleen and ovaries has been confirmed in sheep died of intoxication. The lowest differences in Zn cumulation between experimental and control sheep were observed in the bone, eye chorioidea and musculature. It means that their examination at judging the Zn toxicity is of secondary significance.

Concentration of Cu in the liver and kidneys reflects best the dietetical intake and metabolic activity of Cu (Soli, 1980). In experimental sheep compared to control ones, a daily intake of Cu from emission at the amount of $10 \text{ mg} \cdot \text{kg}^{-1}$ of live body weight most markedly manifested in Cu accumulation, especially in the kidneys, spleen, uterus, ovaries and only then in liver. The presence of Zn and other risk elements in the industrial substrate, entering together with Cu the interreaction relationships on the level of resorption, intermediary metabolism

and secretion was the cause of changes in accumulation as well as in distribution of Cu in experimental animals (Rosa et al., 1986; Bíreš, 1989). Despite the presented, concentration of Cu in the liver and kidneys of sheep died of zinc intoxication approached the levels found by Hidiroglou et al. (1984), Jones et al. (1984) in sheep in the cumulative phase of Cu intoxication. Comparison of Cu levels between experimental and control sheep has not confirmed the diagnostic value of analysis of bones for the Cu content at observation of the effect of industrial emissions from the zinc and copper factory.

Distribution of Fe in the organs examined in experimental and control animals is characteristic for the metabolism of Fe (Underwood, 1977). A high content of Fe in the spleen and other organs observed in the sheep died of zinc intoxication in comparison with the control ones is explained by Fe intake from the industrial substrate, but especially by the mechanism of Zn toxicity (Robinette, 1990).

On the basis of insignificant differences in cumulation and distribution of Mo and Se between experimental and control animals, an insignificant effect of fed emission on the given elements may be judged. Of the elements present in the industrial substrate, the interaction between Cu:Se, Cu:Fe and Zn:Fe have been most studied, (Storey, Greger, 1987; Bíreš et al., 1991) which regarding the presence of other elements did not significantly manifest.

The intake of industrial emission from the copper and zinc factory resulted in a statistically significant higher cumulation of As, Cd and Pb in the organism of experimental sheep than that in control ones. Cumulation of As, Cd and Pb in the organs analysed in experimental animals corresponded to their content in the tested emission and it was in agreement with the knowledge about distribution of these elements in individual tissues (Leita et al., 1991; Massányi et al., 1995a). The highest content of As and Cd was found in the ovaries, Pb in kidneys, then in liver (Pb), kidneys (Cd) and bone tissue (As), which is connected with the mechanism of toxicity of these elements for biological systems (Underwood, 1977; Massányi et al., 1995b). Regarding the dominant representation of Zn in the emission used, the mutual interaction relations, especially between Zn:Cd and Zn:Pb, may be expected. Interinfluencing of Zn and Cd runs through the bond of

methallothionein within the process of resorption, retention and metabolic activity (Kojima et al., 1991). The negative interaction between Zn and Pb is, above all, within the process of absorption (Elsenhans et al., 1978). Comparison of cumulation and distribution of As, Cd and Pb in the organs of experimental and control sheep revealed that in experimental animals the significant differences reflected the intake of these elements from industrial emission. Possibility for interaction relations with Zn, regarding the presence of the other toxic elements, appeared to be secondary.

References

Allen, J.G., Masters, H.G.: Renal lesions and tissue concentrations of zinc, copper, iron and manganese in experimentally zinc intoxicated sheep. *Res. veter. Sci.*, 1985, 39, 249-251.

Allen, J.G., Morcombe, P.W., Masters, H.G., Petterson, D.S., Robertson, T.A.: Acute zinc toxicity. *Austral. vet.J.*, 1986, 63, 93-94.

Bíreš, J.: Interactions between copper, iron, zinc, arsenic, cadmium and lead in the liver of sheep after experimental intoxication with cupric oxide. *Veter. Med. Praha*, 1989, 34, 665-674.

Bíreš, J., Vrzgula, L., Hojerová, A.: Changes in the phagocytic activity of blood leucocytes, concentrations of plasma Ig and albumin in sheep fed pollutant substrate. *Zivoc. Výr.*, 1990, 35, 763-770.

Bíreš, J., Kováč, G., Vrzgula, L.: Interaction between copper and selenium in the course of experimentally - produced copper intoxication. *Vet. Hum. Toxicol.*, 1991, 33, 489-491.

Bíreš, J., Konrád, V., Bartko, P., Bírešová, M.: Experimental intoxication with zinc in sheep from industry emission - clinic, pathology. *Vet. Hum. Toxicol.*, 1996 (in press).

Breitschwerdt, E.B., Armstrong, P.J., Robinette, C.L., Dillman R.C., Karl, M.L., Lowry, E.C.: Three cases of acute zinc toxicosis in dogs. *Vet. Hum. Toxicol.*, 1986, 28, 109-117.

Dreosti, I.E.: Zinc. *J.Food Nutr.*, 1982, 39, 167-173.

Elsenhans, B., Schmolke, G., Kolb, K., Stokes, J., Forth, W.: Metal - metal interactions among toxic and essential trace metals in the rat. *Ecotoxicol. Environ. Saf.*, 1987, 14, 553-562.

Hidiroglou, M., Heaney, D.P., Hartin, K.E.: Copper poisoning in a flock of sheep. Copper excretion patterns after treatment with molybdenum and sulfur or penicillamine. *Can. veter. J.*, 1984, 25, 377-382.

Jones, H.B., Gooneratne, S.R., Howell, J. Mc.C.: X-ray microanalysis of liver and kidney in copper loaded sheep with and without thiomolybdate administration. *Res. veter. Sci.*, 1984, 37, 273-282.

Kojima, S., Furukawa, A., Kiyozumi, M., Shimada, H.: Comparative renal toxicity of metallothioneins with different cadmium/zinc ratios in rats. *Toxicol. Letters*, 1991, 56, 197-205.

Kudláč, S., Šimoník, I.: Toxic elements in cow genital organs and their relation to fertility. *Dtsch. tierärztl. Wschr.*, 1990, 97, 377-440.

Leita, L., Enne, G., De Nobili, M., Baldini, M., Sequi, P.: Heavy metal bioaccumulation in lamb and sheep bred in smelting and mining areas of S.W. Sardinia (Italy). *Bull. Environ. Contam. Toxicol.*, 1991, 46, 887-893.

Leonard, A., Gerber, G.B., Leonard, F.: Mutagenicity carcinogenicity and teratogenicity of zinc. *Mutat Res.*, 1986, 168, 343-353.

Llobet, J.M., Domingo, J.L., Colomina, M.T., Mayayo, E., Corbella, J.: Subchronic oral toxicity of zinc rats. *Bull. Environ. Contam. Toxicol.*, 1988, 41, 36-43.

Lloyd, J.W., Rook, J.S., Braselton, W.E., Shea, M.E.: Relationships between liver element concentrations and age in perinatal lambs dying of natural causes in Michigan, USA. *Prev. Vet. Med.*, 1993, 17, 175-181.

Massányi, P., Uhrin, V., Toman, R.: Distribution of cadmium and its influence on the growth of offspring after an experimental application to female rats. *J. Environ. Sci. Health*, 1995, A 30, 51-62 (a).

Massányi, P., Toman, R., Valent, M., Čupka, P.: Evaluation of selected parameters of a metabolic profile and levels of cadmium in reproductive organs of rabbits after an experimental administration. *Acta Phys. Hung.*, 1995, 83, 267-273 (b).

O'Dell, B.L.: History and status of zinc in nutrition. *Fed. Amer. Soc. exp. Biol.*, 1984, 43, 2821-2822.

Pauwels, M., Weyenbergh, J.V., Soumillion, A., Prost, P., De Ley, M.: Induction by zinc of specific metallothionein isoforms in human monocytes. *Eur. J. Biochem.*, 1994, 220, 105-110.

Robinette, L.C.: Zinc. *Vet. Clinics of North America : Small Animal Practice*, 1990, 20, 539-544.

Rosa, I.V., Ammerman, C.B., Henry, P.R.: Interrelationships of dietary copper, zinc, and iron on performance and tissue mineral concentration in sheep. *Nutr. Rep. Int.*, 1986, 34, 893-902.

Smith, B.L., Embling, P.: Effect of oral doses of zinc oxide on the secretion of pancreatic juice and bile in sheep. *Res. Veter. Sci.*, 1984, 37, 58-62.

Soli, N.E.: Chronic copper poisoning in sheep. *Nord. Veter.-Med.*, 1980, 32, 75-89.

Storey, M.L., Greger, J.L.: Iron, zinc and copper interactions: Chronic versus acute responses of rats. *J. Nutr.*, 1987, 117, 1434-1442.

Thompson, L.J., Hall, J.O., Meerdink, G.L.: Toxic effects of trace element excess. *Veterinary Clinics of North America. Food Animal Practice*, 1991, 7, 277-306.

Underwood, E.J.: Trace elements in human and animal nutrition. Academic Press, New York, San Francisco, London, 1977, 545.

Valee, B.L., Galdes, A.: The metallobiochemistry of zinc enzymes. *Adv. Enzymol.*, 1984, 56, 284-430.

Wentink, G.H., Spierenburg, Th.J., De Graaf, G. J., Van Exsel, A.C.A.: A case of chronic zinc poisoning in calves fed with zinc - contaminated roughage. *Veter. Quarterly*, 1985, 7, 153-157.

Date Received:January 6, 1997
Date Accepted:June 6, 1997